إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 3.3.1
اضرب في .
خطوة 3.3.2
اضرب الأُسس في .
خطوة 3.3.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.2.2
اضرب في .
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.4
بسّط العبارة.
خطوة 3.3.4.1
اضرب في .
خطوة 3.3.4.2
اطرح من .
خطوة 3.3.4.3
انقُل السالب أمام الكسر.
خطوة 3.3.4.4
اضرب في .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.5
احذِف العامل المشترك لـ و.
خطوة 3.5.1
أخرِج العامل من .
خطوة 3.5.2
ألغِ العوامل المشتركة.
خطوة 3.5.2.1
أخرِج العامل من .
خطوة 3.5.2.2
ألغِ العامل المشترك.
خطوة 3.5.2.3
أعِد كتابة العبارة.
خطوة 3.6
أعِد كتابة بالصيغة .
خطوة 3.7
اجمع و.
خطوة 3.8
بسّط العبارة.
خطوة 3.8.1
اضرب في .
خطوة 3.8.2
انقُل السالب أمام الكسر.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
اقسِم كل حد في على وبسّط.
خطوة 5.2.1
اقسِم كل حد في على .
خطوة 5.2.2
بسّط الطرف الأيسر.
خطوة 5.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5.2.2.2
اقسِم على .
خطوة 5.2.3
بسّط الطرف الأيمن.
خطوة 5.2.3.1
اقسِم على .
خطوة 5.3
اضرب كلا الطرفين في .
خطوة 5.4
بسّط الطرف الأيسر.
خطوة 5.4.1
ألغِ العامل المشترك لـ .
خطوة 5.4.1.1
ألغِ العامل المشترك.
خطوة 5.4.1.2
أعِد كتابة العبارة.
خطوة 5.5
اقسِم كل حد في على وبسّط.
خطوة 5.5.1
اقسِم كل حد في على .
خطوة 5.5.2
بسّط الطرف الأيسر.
خطوة 5.5.2.1
ألغِ العامل المشترك لـ .
خطوة 5.5.2.1.1
ألغِ العامل المشترك.
خطوة 5.5.2.1.2
اقسِم على .
خطوة 5.5.3
بسّط الطرف الأيمن.
خطوة 5.5.3.1
انقُل السالب أمام الكسر.
خطوة 6
استبدِل بـ .