حساب التفاضل والتكامل الأمثلة

Hallar la Derivada Usando la Regla de la Cadena - d/dt -2t(6t^8-1)^7
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.4
اضرب في .
خطوة 4.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
أضف و.
خطوة 4.6.2
اضرب في .
خطوة 5
ارفع إلى القوة .
خطوة 6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 7
أضف و.
خطوة 8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 9
اضرب في .
خطوة 10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
طبّق خاصية التوزيع.
خطوة 10.2
اضرب في .
خطوة 10.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 10.3.1
أخرِج العامل من .
خطوة 10.3.2
أخرِج العامل من .
خطوة 10.3.3
أخرِج العامل من .