حساب التفاضل والتكامل الأمثلة

Hallar la Derivada Usando la Regla de la Cadena - d/dx الجذر التربيعي لـ sin(x+1)
خطوة 1
استخدِم لكتابة في صورة .
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4
اجمع و.
خطوة 5
اجمع البسوط على القاسم المشترك.
خطوة 6
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
اطرح من .
خطوة 7
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
انقُل السالب أمام الكسر.
خطوة 7.2
اجمع و.
خطوة 7.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 8
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 8.2
مشتق بالنسبة إلى يساوي .
خطوة 8.3
استبدِل كافة حالات حدوث بـ .
خطوة 9
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اجمع و.
خطوة 9.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 9.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 9.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 9.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 9.5.1
أضف و.
خطوة 9.5.2
اضرب في .
خطوة 10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
افصِل الكسور.
خطوة 10.2
حوّل من إلى .
خطوة 10.3
اجمع و.
خطوة 10.4
أعِد ترتيب العوامل في .