حساب التفاضل والتكامل الأمثلة

أوجد التكامل (4x^3-csc(2x+3)cot(2x+3)- الجذر الخامس لـ 6-5x)dx
خطوة 1
احذِف الأقواس.
خطوة 2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.3.3
اضرب في .
خطوة 6.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.4.2
أضف و.
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اجمع و.
خطوة 7.2
اجمع و.
خطوة 7.3
اجمع و.
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
بما أن مشتق هو ، إذن تكامل هو .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1.1
أوجِد مشتقة .
خطوة 11.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 11.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.1.3.3
اضرب في .
خطوة 11.1.4
اطرح من .
خطوة 11.2
أعِد كتابة المسألة باستخدام و.
خطوة 12
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
انقُل السالب أمام الكسر.
خطوة 12.2
اجمع و.
خطوة 13
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 14
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 14.1
اضرب في .
خطوة 14.2
اضرب في .
خطوة 15
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 16
استخدِم لكتابة في صورة .
خطوة 17
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 18
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 18.1
بسّط.
خطوة 18.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 18.2.1
اجمع و.
خطوة 18.2.2
اضرب في .
خطوة 18.2.3
اضرب في .
خطوة 18.2.4
أخرِج العامل من .
خطوة 18.2.5
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 18.2.5.1
أخرِج العامل من .
خطوة 18.2.5.2
ألغِ العامل المشترك.
خطوة 18.2.5.3
أعِد كتابة العبارة.
خطوة 19
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 19.1
استبدِل كافة حالات حدوث بـ .
خطوة 19.2
استبدِل كافة حالات حدوث بـ .
خطوة 20
أعِد ترتيب الحدود.