حساب التفاضل والتكامل الأمثلة

خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أخرِج العامل من .
خطوة 3.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.3.2
اضرب في .
خطوة 3.2.2
اجمع و.
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
اجمع و.
خطوة 3.4.2
اضرب في .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
اجمع و.
خطوة 3.6.2
اضرب في .
خطوة 3.6.3
اجمع و.
خطوة 3.6.4
أعِد ترتيب الحدود.