حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx y=2x^3- الجذر التربيعي لـ x+sec(x)-2/(x^2)
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
اضرب في .
خطوة 3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.5
اجمع و.
خطوة 3.6
اجمع البسوط على القاسم المشترك.
خطوة 3.7
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
اضرب في .
خطوة 3.7.2
اطرح من .
خطوة 3.8
انقُل السالب أمام الكسر.
خطوة 3.9
اجمع و.
خطوة 3.10
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 4
مشتق بالنسبة إلى يساوي .
خطوة 5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.2
أعِد كتابة بالصيغة .
خطوة 5.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 5.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 5.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.5
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.5.2
اضرب في .
خطوة 5.6
اضرب في .
خطوة 5.7
ارفع إلى القوة .
خطوة 5.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.9
اطرح من .
خطوة 5.10
اضرب في .
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.2
اجمع و.
خطوة 6.3
أعِد ترتيب الحدود.