إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب في .
خطوة 2.5
اضرب في .
خطوة 2.6
انقُل إلى يسار .
خطوة 3
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أعِد كتابة بالصيغة .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.7
أضف و.
خطوة 3.8
اضرب في .
خطوة 3.9
اضرب في .
خطوة 3.10
اجمع و.
خطوة 3.11
اجمع و.
خطوة 3.12
اجمع و.
خطوة 3.13
انقُل إلى يسار .
خطوة 3.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 3.15
ألغِ العامل المشترك لـ .
خطوة 3.15.1
ألغِ العامل المشترك.
خطوة 3.15.2
أعِد كتابة العبارة.
خطوة 4
خطوة 4.1
طبّق قاعدة الضرب على .
خطوة 4.2
طبّق خاصية التوزيع.
خطوة 4.3
جمّع الحدود.
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
ارفع إلى القوة .
خطوة 4.3.3
اجمع و.
خطوة 4.3.4
احذِف العامل المشترك لـ و.
خطوة 4.3.4.1
أخرِج العامل من .
خطوة 4.3.4.2
ألغِ العوامل المشتركة.
خطوة 4.3.4.2.1
أخرِج العامل من .
خطوة 4.3.4.2.2
ألغِ العامل المشترك.
خطوة 4.3.4.2.3
أعِد كتابة العبارة.
خطوة 4.3.5
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.3.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.3.7
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 4.3.7.1
اضرب في .
خطوة 4.3.7.2
اضرب في .
خطوة 4.3.7.3
أعِد ترتيب عوامل .
خطوة 4.3.8
اجمع البسوط على القاسم المشترك.