إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.4
اجمع الكسور.
خطوة 4.4.1
أضف و.
خطوة 4.4.2
اضرب في .
خطوة 4.4.3
اجمع و.
خطوة 5
خطوة 5.1
طبّق خاصية التوزيع.
خطوة 5.2
طبّق خاصية التوزيع.
خطوة 5.3
بسّط بَسْط الكسر.
خطوة 5.3.1
بسّط كل حد.
خطوة 5.3.1.1
اضرب في .
خطوة 5.3.1.2
اضرب في .
خطوة 5.3.2
أعِد ترتيب العوامل في .
خطوة 5.4
أعِد ترتيب الحدود.
خطوة 5.5
أخرِج العامل من .
خطوة 5.5.1
أخرِج العامل من .
خطوة 5.5.2
أخرِج العامل من .
خطوة 5.5.3
أخرِج العامل من .
خطوة 5.5.4
أخرِج العامل من .
خطوة 5.5.5
أخرِج العامل من .