إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اجمع و.
خطوة 1.2
اجمع الكسور.
خطوة 1.2.1
اجمع و.
خطوة 1.2.2
انقُل إلى يسار .
خطوة 1.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.4
اضرب في .
خطوة 4.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.6
بسّط العبارة.
خطوة 4.6.1
أضف و.
خطوة 4.6.2
اضرب في .
خطوة 5
خطوة 5.1
انقُل .
خطوة 5.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.3
أضف و.
خطوة 6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 7
انقُل إلى يسار .
خطوة 8
خطوة 8.1
طبّق خاصية التوزيع.
خطوة 8.2
جمّع الحدود.
خطوة 8.2.1
اجمع و.
خطوة 8.2.2
اجمع و.
خطوة 8.2.3
اضرب في .
خطوة 8.2.4
اجمع و.
خطوة 8.2.5
احذِف العامل المشترك لـ و.
خطوة 8.2.5.1
أخرِج العامل من .
خطوة 8.2.5.2
ألغِ العوامل المشتركة.
خطوة 8.2.5.2.1
أخرِج العامل من .
خطوة 8.2.5.2.2
ألغِ العامل المشترك.
خطوة 8.2.5.2.3
أعِد كتابة العبارة.
خطوة 8.2.5.2.4
اقسِم على .
خطوة 8.2.6
اجمع و.
خطوة 8.2.7
اضرب في .
خطوة 8.2.8
اجمع و.
خطوة 8.2.9
اجمع و.
خطوة 8.2.10
انقُل إلى يسار .
خطوة 8.2.11
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 8.2.12
اجمع و.
خطوة 8.2.13
اجمع البسوط على القاسم المشترك.
خطوة 8.2.14
اضرب في .
خطوة 8.3
أعِد ترتيب الحدود.
خطوة 8.4
بسّط بَسْط الكسر.
خطوة 8.4.1
أخرِج العامل من .
خطوة 8.4.1.1
أخرِج العامل من .
خطوة 8.4.1.2
أخرِج العامل من .
خطوة 8.4.1.3
أخرِج العامل من .
خطوة 8.4.2
أضف و.