حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx y=(x^3+1) اللوغاريتم الطبيعي لـ x^3+1
خطوة 1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أضف و.
خطوة 3.4.2
اجمع و.
خطوة 3.4.3
اجمع و.
خطوة 3.4.4
انقُل إلى يسار .
خطوة 3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
أضف و.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد ترتيب الحدود.
خطوة 4.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
أعِد كتابة بالصيغة .
خطوة 4.2.1.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة مجموع مكعبين، حيث و.
خطوة 4.2.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.3.1
اضرب في .
خطوة 4.2.1.3.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.2
اضرب في .
خطوة 4.2.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
أعِد كتابة بالصيغة .
خطوة 4.2.3.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة مجموع مكعبين، حيث و.
خطوة 4.2.3.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.3.1
اضرب في .
خطوة 4.2.3.3.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.1
ألغِ العامل المشترك.
خطوة 4.2.4.2
أعِد كتابة العبارة.
خطوة 4.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.5.1
ألغِ العامل المشترك.
خطوة 4.2.5.2
اقسِم على .