إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7
اضرب في .
خطوة 2.8
اجمع و.
خطوة 2.9
اجمع و.
خطوة 2.10
اضرب في .
خطوة 3
خطوة 3.1
طبّق خاصية التوزيع.
خطوة 3.2
جمّع الحدود.
خطوة 3.2.1
اجمع و.
خطوة 3.2.2
احذِف العامل المشترك لـ و.
خطوة 3.2.2.1
أخرِج العامل من .
خطوة 3.2.2.2
ألغِ العوامل المشتركة.
خطوة 3.2.2.2.1
أخرِج العامل من .
خطوة 3.2.2.2.2
ألغِ العامل المشترك.
خطوة 3.2.2.2.3
أعِد كتابة العبارة.
خطوة 3.2.3
أضف و.