إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4
أعِد كتابة بالصيغة .
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.6
اضرب في .
خطوة 2.3.7
اضرب في .
خطوة 2.3.8
اطرح من .
خطوة 2.3.9
انقُل السالب أمام الكسر.
خطوة 2.3.10
اضرب في .
خطوة 2.3.11
اضرب في .
خطوة 2.3.12
اضرب في .
خطوة 2.3.13
أضف و.
خطوة 2.4
بسّط.
خطوة 2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.4.2
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
أضف إلى كلا المتعادلين.
خطوة 5.2
اضرب كلا الطرفين في .
خطوة 5.3
بسّط.
خطوة 5.3.1
بسّط الطرف الأيسر.
خطوة 5.3.1.1
ألغِ العامل المشترك لـ .
خطوة 5.3.1.1.1
ألغِ العامل المشترك.
خطوة 5.3.1.1.2
أعِد كتابة العبارة.
خطوة 5.3.2
بسّط الطرف الأيمن.
خطوة 5.3.2.1
اجمع و.
خطوة 6
استبدِل بـ .