إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
خطوة 3.1
استخدِم مبرهنة ذات الحدين.
خطوة 3.2
أوجِد المشتقة.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
طبّق قاعدة الضرب على .
خطوة 3.2.1.4
ارفع إلى القوة .
خطوة 3.2.1.5
اضرب في .
خطوة 3.2.1.6
اضرب في .
خطوة 3.2.1.7
طبّق قاعدة الضرب على .
خطوة 3.2.1.8
ارفع إلى القوة .
خطوة 3.2.1.9
اضرب في .
خطوة 3.2.1.10
ارفع إلى القوة .
خطوة 3.2.1.11
اضرب في .
خطوة 3.2.1.12
اضرب في .
خطوة 3.2.1.13
ارفع إلى القوة .
خطوة 3.2.1.14
اضرب في .
خطوة 3.2.1.15
ارفع إلى القوة .
خطوة 3.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
اضرب في .
خطوة 3.5
أعِد كتابة بالصيغة .
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.7.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.8
اضرب في .
خطوة 3.9
أعِد كتابة بالصيغة .
خطوة 3.10
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.11
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.11.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.11.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.11.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.12
اضرب في .
خطوة 3.13
أعِد كتابة بالصيغة .
خطوة 3.14
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.15
أعِد كتابة بالصيغة .
خطوة 3.16
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.17
أضف و.
خطوة 3.18
بسّط.
خطوة 3.18.1
طبّق خاصية التوزيع.
خطوة 3.18.2
جمّع الحدود.
خطوة 3.18.2.1
اضرب في .
خطوة 3.18.2.2
اضرب في .
خطوة 3.18.2.3
اضرب في .
خطوة 3.18.2.4
اضرب في .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
أخرِج العامل من .
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
أخرِج العامل من .
خطوة 5.2.3
أخرِج العامل من .
خطوة 5.2.4
أخرِج العامل من .
خطوة 5.2.5
أخرِج العامل من .
خطوة 5.2.6
أخرِج العامل من .
خطوة 5.2.7
أخرِج العامل من .
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
اقسِم على .
خطوة 6
استبدِل بـ .