حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم مبرهنة ذات الحدين.
خطوة 3.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
طبّق قاعدة الضرب على .
خطوة 3.2.1.4
ارفع إلى القوة .
خطوة 3.2.1.5
اضرب في .
خطوة 3.2.1.6
اضرب في .
خطوة 3.2.1.7
طبّق قاعدة الضرب على .
خطوة 3.2.1.8
ارفع إلى القوة .
خطوة 3.2.1.9
اضرب في .
خطوة 3.2.1.10
ارفع إلى القوة .
خطوة 3.2.1.11
اضرب في .
خطوة 3.2.1.12
اضرب في .
خطوة 3.2.1.13
ارفع إلى القوة .
خطوة 3.2.1.14
اضرب في .
خطوة 3.2.1.15
ارفع إلى القوة .
خطوة 3.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
اضرب في .
خطوة 3.5
أعِد كتابة بالصيغة .
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.8
اضرب في .
خطوة 3.9
أعِد كتابة بالصيغة .
خطوة 3.10
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.11
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.11.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.11.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.11.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.12
اضرب في .
خطوة 3.13
أعِد كتابة بالصيغة .
خطوة 3.14
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.15
أعِد كتابة بالصيغة .
خطوة 3.16
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.17
أضف و.
خطوة 3.18
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.18.1
طبّق خاصية التوزيع.
خطوة 3.18.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.18.2.1
اضرب في .
خطوة 3.18.2.2
اضرب في .
خطوة 3.18.2.3
اضرب في .
خطوة 3.18.2.4
اضرب في .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
أخرِج العامل من .
خطوة 5.2.3
أخرِج العامل من .
خطوة 5.2.4
أخرِج العامل من .
خطوة 5.2.5
أخرِج العامل من .
خطوة 5.2.6
أخرِج العامل من .
خطوة 5.2.7
أخرِج العامل من .
خطوة 5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
اقسِم على .
خطوة 6
استبدِل بـ .