حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
أعِد كتابة بالصيغة .
خطوة 2.5
مشتق بالنسبة إلى يساوي .
خطوة 2.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
طبّق خاصية التوزيع.
خطوة 2.6.2
اضرب في .
خطوة 2.6.3
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أعِد ترتيب العوامل في .
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
أعِد كتابة العبارة.
خطوة 5.3.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.3.1
ألغِ العامل المشترك.
خطوة 5.3.2.3.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1
ألغِ العامل المشترك.
خطوة 5.3.3.1.2
أعِد كتابة العبارة.
خطوة 5.3.3.2
افصِل الكسور.
خطوة 5.3.3.3
حوّل من إلى .
خطوة 5.3.3.4
حوّل من إلى .
خطوة 6
استبدِل بـ .