إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
مشتق بالنسبة إلى يساوي .
خطوة 3
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.3
أوجِد المشتقة.
خطوة 3.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.3
أضف و.
خطوة 3.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.6
اضرب في .
خطوة 3.3.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.9
اضرب في .
خطوة 3.3.10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.11
اضرب في .
خطوة 3.4
بسّط.
خطوة 3.4.1
طبّق خاصية التوزيع.
خطوة 3.4.2
طبّق خاصية التوزيع.
خطوة 3.4.3
جمّع الحدود.
خطوة 3.4.3.1
انقُل إلى يسار .
خطوة 3.4.3.2
اضرب في .
خطوة 3.4.3.3
ارفع إلى القوة .
خطوة 3.4.3.4
ارفع إلى القوة .
خطوة 3.4.3.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.3.6
أضف و.
خطوة 3.4.3.7
اضرب في .
خطوة 3.4.3.8
اضرب في .
خطوة 3.4.3.9
اضرب في .
خطوة 3.4.3.10
أضف و.
خطوة 3.4.3.11
اضرب في .
خطوة 3.4.3.12
اطرح من .
خطوة 3.4.4
أعِد ترتيب الحدود.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
استبدِل بـ .