إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أعِد كتابة بالصيغة .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5
بسّط.
خطوة 2.5.1
طبّق خاصية التوزيع.
خطوة 2.5.2
طبّق خاصية التوزيع.
خطوة 2.5.3
طبّق خاصية التوزيع.
خطوة 2.5.4
جمّع الحدود.
خطوة 2.5.4.1
اضرب في .
خطوة 2.5.4.2
اضرب في .
خطوة 2.5.5
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.1.1
اطرح من كلا المتعادلين.
خطوة 5.1.2
اطرح من كلا المتعادلين.
خطوة 5.2
أخرِج العامل من .
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
أخرِج العامل من .
خطوة 5.2.3
أخرِج العامل من .
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
خطوة 5.3.3.1
اجمع البسوط على القاسم المشترك.
خطوة 5.3.3.2
احذِف العامل المشترك لـ و.
خطوة 5.3.3.2.1
أخرِج العامل من .
خطوة 5.3.3.2.2
أخرِج العامل من .
خطوة 5.3.3.2.3
أخرِج العامل من .
خطوة 5.3.3.2.4
أعِد كتابة بالصيغة .
خطوة 5.3.3.2.5
ألغِ العامل المشترك.
خطوة 5.3.3.2.6
اقسِم على .
خطوة 6
استبدِل بـ .