حساب التفاضل والتكامل الأمثلة

Encuentre dy/dx e^y=x^3 اللوغاريتم الطبيعي لـ x
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
أعِد كتابة بالصيغة .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اجمع و.
خطوة 3.3.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
أخرِج العامل من .
خطوة 3.3.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1
ارفع إلى القوة .
خطوة 3.3.2.2.2
أخرِج العامل من .
خطوة 3.3.2.2.3
ألغِ العامل المشترك.
خطوة 3.3.2.2.4
أعِد كتابة العبارة.
خطوة 3.3.2.2.5
اقسِم على .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4
أعِد ترتيب الحدود.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اقسِم كل حد في على .
خطوة 5.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.1.2
اقسِم على .
خطوة 5.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
بسّط بنقل داخل اللوغاريتم.
خطوة 6
استبدِل بـ .