إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
خطوة 2.1
أوجِد المشتقة.
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.4
أعِد كتابة بالصيغة .
خطوة 2.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.6
اضرب في .
خطوة 2.3
بسّط.
خطوة 2.3.1
طبّق خاصية التوزيع.
خطوة 2.3.2
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
بسّط الطرف الأيسر.
خطوة 5.1.1
أعِد ترتيب العوامل في .
خطوة 5.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.2.1
أضف إلى كلا المتعادلين.
خطوة 5.2.2
اطرح من كلا المتعادلين.
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
أعِد كتابة العبارة.
خطوة 5.3.2.3
ألغِ العامل المشترك لـ .
خطوة 5.3.2.3.1
ألغِ العامل المشترك.
خطوة 5.3.2.3.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
خطوة 5.3.3.1
بسّط كل حد.
خطوة 5.3.3.1.1
ألغِ العامل المشترك لـ .
خطوة 5.3.3.1.1.1
ألغِ العامل المشترك.
خطوة 5.3.3.1.1.2
أعِد كتابة العبارة.
خطوة 5.3.3.1.2
انقُل السالب أمام الكسر.
خطوة 5.3.3.1.3
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6
استبدِل بـ .