حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2
أعِد كتابة بالصيغة .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب في .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.1.2
مشتق بالنسبة إلى يساوي .
خطوة 3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
أعِد كتابة بالصيغة .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.1
أعِد الكتابة.
خطوة 5.1.1.2
بسّط بجمع الأصفار.
خطوة 5.1.1.3
طبّق خاصية التوزيع.
خطوة 5.1.1.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.4.1
اضرب في .
خطوة 5.1.1.4.2
أعِد ترتيب العوامل في .
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 5.3
اطرح من كلا المتعادلين.
خطوة 5.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
أخرِج العامل من .
خطوة 5.4.2
أخرِج العامل من .
خطوة 5.4.3
أخرِج العامل من .
خطوة 5.5
أعِد كتابة بالصيغة .
خطوة 5.6
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
اقسِم كل حد في على .
خطوة 5.6.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.2.1.1
ألغِ العامل المشترك.
خطوة 5.6.2.1.2
اقسِم على .
خطوة 5.6.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.3.1
انقُل السالب أمام الكسر.
خطوة 5.6.3.2
اجمع البسوط على القاسم المشترك.
خطوة 6
استبدِل بـ .