حساب التفاضل والتكامل الأمثلة

الرسم البياني f(x)=1/x- اللوغاريتم الطبيعي لـ x
خطوة 1
أوجِد خطوط التقارب.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.2
بما أن عندما من جهة اليسار و عندما من جهة اليمين، إذن خط تقارب رأسي.
خطوة 1.3
متجاهلاً اللوغاريتم، ضَع في اعتبارك الدالة الكسرية حيث هي درجة البسط و هي درجة القاسم.
1. إذا كانت ، فإن المحور السيني، ، هو خط التقارب الأفقي.
2. في حالة ، فإن خط التقارب الأفقي هو الخط .
3. في حالة ، لا يوجد خط تقارب أفقي (يوجد خط تقارب مائل).
خطوة 1.4
أوجِد و.
خطوة 1.5
بما أن ، إذن خط التقارب الأفقي هو الخط حيث إن و.
خطوة 1.6
لا توجد خطوط تقارب مائلة للدوال اللوغاريتمية والمثلثية.
لا توجد خطوط تقارب مائلة
خطوة 1.7
هذه هي مجموعة جميع خطوط التقارب.
خطوط التقارب الرأسية:
خطوط التقارب الأفقية:
خطوط التقارب الرأسية:
خطوط التقارب الأفقية:
خطوة 2
أوجِد النقطة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
اقسِم على .
خطوة 2.2.1.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.2.1.3
اضرب في .
خطوة 2.2.2
أضف و.
خطوة 2.2.3
الإجابة النهائية هي .
خطوة 2.3
حوّل إلى رقم عشري.
خطوة 3
أوجِد النقطة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
الإجابة النهائية هي .
خطوة 3.3
حوّل إلى رقم عشري.
خطوة 4
أوجِد النقطة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
الإجابة النهائية هي .
خطوة 4.3
حوّل إلى رقم عشري.
خطوة 5
يمكن تمثيل دالة اللوغاريتم بيانيًا باستخدام خط التقارب الرأسي عند والنقاط .
خط التقارب الرأسي:
خطوة 6