إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.3
أضف و.
خطوة 1.1.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.5
اضرب في .
خطوة 1.1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.7
اضرب في .
خطوة 1.1.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.9
اضرب في .
خطوة 1.1.4
بسّط.
خطوة 1.1.4.1
أخرِج العامل من .
خطوة 1.1.4.1.1
أخرِج العامل من .
خطوة 1.1.4.1.2
أخرِج العامل من .
خطوة 1.1.4.1.3
أخرِج العامل من .
خطوة 1.1.4.2
جمّع الحدود.
خطوة 1.1.4.2.1
انقُل إلى يسار .
خطوة 1.1.4.2.2
اطرح من .
خطوة 1.1.4.3
أعِد كتابة بالصيغة .
خطوة 1.1.4.4
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.1.4.4.1
طبّق خاصية التوزيع.
خطوة 1.1.4.4.2
طبّق خاصية التوزيع.
خطوة 1.1.4.4.3
طبّق خاصية التوزيع.
خطوة 1.1.4.5
بسّط ووحّد الحدود المتشابهة.
خطوة 1.1.4.5.1
بسّط كل حد.
خطوة 1.1.4.5.1.1
اضرب في .
خطوة 1.1.4.5.1.2
اضرب في .
خطوة 1.1.4.5.1.3
اضرب في .
خطوة 1.1.4.5.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.4.5.1.5
اضرب في بجمع الأُسس.
خطوة 1.1.4.5.1.5.1
انقُل .
خطوة 1.1.4.5.1.5.2
اضرب في .
خطوة 1.1.4.5.1.6
اضرب في .
خطوة 1.1.4.5.1.7
اضرب في .
خطوة 1.1.4.5.2
اطرح من .
خطوة 1.1.4.6
وسّع بضرب كل حد في العبارة الأولى في كل حد في العبارة الثانية.
خطوة 1.1.4.7
بسّط كل حد.
خطوة 1.1.4.7.1
اضرب في .
خطوة 1.1.4.7.2
اضرب في .
خطوة 1.1.4.7.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.4.7.4
اضرب في بجمع الأُسس.
خطوة 1.1.4.7.4.1
انقُل .
خطوة 1.1.4.7.4.2
اضرب في .
خطوة 1.1.4.7.5
اضرب في .
خطوة 1.1.4.7.6
اضرب في .
خطوة 1.1.4.7.7
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.4.7.8
اضرب في بجمع الأُسس.
خطوة 1.1.4.7.8.1
انقُل .
خطوة 1.1.4.7.8.2
اضرب في .
خطوة 1.1.4.7.8.2.1
ارفع إلى القوة .
خطوة 1.1.4.7.8.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.4.7.8.3
أضف و.
خطوة 1.1.4.7.9
انقُل إلى يسار .
خطوة 1.1.4.8
اطرح من .
خطوة 1.1.4.9
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.1.4
أخرِج العامل من .
خطوة 2.2.1.5
أخرِج العامل من .
خطوة 2.2.1.6
أخرِج العامل من .
خطوة 2.2.1.7
أخرِج العامل من .
خطوة 2.2.2
أعِد ترتيب الحدود.
خطوة 2.2.3
حلّل إلى عوامل.
خطوة 2.2.3.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 2.2.3.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2.2.3.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 2.2.3.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 2.2.3.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 2.2.3.1.3.2
ارفع إلى القوة .
خطوة 2.2.3.1.3.3
اضرب في .
خطوة 2.2.3.1.3.4
ارفع إلى القوة .
خطوة 2.2.3.1.3.5
اضرب في .
خطوة 2.2.3.1.3.6
أضف و.
خطوة 2.2.3.1.3.7
اضرب في .
خطوة 2.2.3.1.3.8
اطرح من .
خطوة 2.2.3.1.3.9
أضف و.
خطوة 2.2.3.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 2.2.3.1.5
اقسِم على .
خطوة 2.2.3.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | - | + | - | + |
خطوة 2.2.3.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | |||||||||||
- | - | + | - | + |
خطوة 2.2.3.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | |||||||||||
- | - | + | - | + | |||||||
- | + |
خطوة 2.2.3.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | |||||||||||
- | - | + | - | + | |||||||
+ | - |
خطوة 2.2.3.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | |||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ |
خطوة 2.2.3.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | |||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - |
خطوة 2.2.3.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - |
خطوة 2.2.3.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 2.2.3.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
خطوة 2.2.3.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- |
خطوة 2.2.3.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
خطوة 2.2.3.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
خطوة 2.2.3.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
خطوة 2.2.3.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 2.2.3.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
خطوة 2.2.3.1.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 2.2.3.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 2.2.3.2
احذِف الأقواس غير الضرورية.
خطوة 2.2.4
حلّل إلى عوامل.
خطوة 2.2.4.1
حلّل إلى عوامل بالتجميع.
خطوة 2.2.4.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 2.2.4.1.1.1
أخرِج العامل من .
خطوة 2.2.4.1.1.2
أعِد كتابة في صورة زائد
خطوة 2.2.4.1.1.3
طبّق خاصية التوزيع.
خطوة 2.2.4.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.4.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.4.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.4.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.2.4.2
احذِف الأقواس غير الضرورية.
خطوة 2.2.5
اجمع الأُسس.
خطوة 2.2.5.1
أخرِج العامل من .
خطوة 2.2.5.2
أعِد كتابة بالصيغة .
خطوة 2.2.5.3
أخرِج العامل من .
خطوة 2.2.5.4
أعِد كتابة بالصيغة .
خطوة 2.2.5.5
احذِف الأقواس.
خطوة 2.2.5.6
ارفع إلى القوة .
خطوة 2.2.5.7
ارفع إلى القوة .
خطوة 2.2.5.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.5.9
أضف و.
خطوة 2.2.5.10
اضرب في .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2.2
أضف إلى كلا المتعادلين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
اضرب في .
خطوة 4.1.2.3
اطرح من .
خطوة 4.1.2.4
ارفع إلى القوة .
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
اضرب في .
خطوة 4.2.2.2
اطرح من .
خطوة 4.2.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.2.4
اضرب في .
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5