إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.2
انقُل إلى يسار .
خطوة 1.1.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.6
بسّط العبارة.
خطوة 1.1.3.6.1
أضف و.
خطوة 1.1.3.6.2
اضرب في .
خطوة 1.1.4
ارفع إلى القوة .
خطوة 1.1.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6
أضف و.
خطوة 1.1.7
اجمع و.
خطوة 1.1.8
بسّط.
خطوة 1.1.8.1
طبّق خاصية التوزيع.
خطوة 1.1.8.2
طبّق خاصية التوزيع.
خطوة 1.1.8.3
طبّق خاصية التوزيع.
خطوة 1.1.8.4
بسّط بَسْط الكسر.
خطوة 1.1.8.4.1
بسّط كل حد.
خطوة 1.1.8.4.1.1
اضرب في بجمع الأُسس.
خطوة 1.1.8.4.1.1.1
انقُل .
خطوة 1.1.8.4.1.1.2
اضرب في .
خطوة 1.1.8.4.1.1.2.1
ارفع إلى القوة .
خطوة 1.1.8.4.1.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.8.4.1.1.3
أضف و.
خطوة 1.1.8.4.1.2
اضرب في .
خطوة 1.1.8.4.1.3
اضرب في .
خطوة 1.1.8.4.1.4
اضرب في .
خطوة 1.1.8.4.1.5
اضرب في .
خطوة 1.1.8.4.2
جمّع الحدود المتعاكسة في .
خطوة 1.1.8.4.2.1
اطرح من .
خطوة 1.1.8.4.2.2
أضف و.
خطوة 1.1.8.5
انقُل السالب أمام الكسر.
خطوة 1.1.8.6
بسّط القاسم.
خطوة 1.1.8.6.1
أعِد كتابة بالصيغة .
خطوة 1.1.8.6.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.1.8.6.3
طبّق قاعدة الضرب على .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
اقسِم كل حد في على وبسّط.
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اقسِم على .
خطوة 3
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
أوجِد قيمة .
خطوة 3.2.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.2.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.2.2
أوجِد قيمة في .
خطوة 3.2.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.2.2.2
اطرح من كلا المتعادلين.
خطوة 3.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.3.2
أوجِد قيمة في .
خطوة 3.2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.3.2.2
أضف إلى كلا المتعادلين.
خطوة 3.2.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3.3
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.2
بسّط القاسم.
خطوة 4.1.2.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.2.2
اطرح من .
خطوة 4.1.2.3
بسّط العبارة.
خطوة 4.1.2.3.1
اضرب في .
خطوة 4.1.2.3.2
اقسِم على .
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
ارفع إلى القوة .
خطوة 4.2.2.2
اطرح من .
خطوة 4.2.2.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 4.3
احسِب القيمة في .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط.
خطوة 4.3.2.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.3.2.2
اطرح من .
خطوة 4.3.2.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 4.4
اسرِد جميع النقاط.
خطوة 5