حساب التفاضل والتكامل الأمثلة

أوجد خط المماس الأفقي y^2=x^3+3x^2
خطوة 1
Solve the equation as in terms of .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أخرِج العامل من .
خطوة 1.2.1.3
أخرِج العامل من .
خطوة 1.2.2
أخرِج الحدود من تحت الجذر.
خطوة 1.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 1.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 1.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2
Set each solution of as a function of .
خطوة 3
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة المتعادلين.
خطوة 3.2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.2
أعِد كتابة بالصيغة .
خطوة 3.3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.2.3
اضرب في .
خطوة 3.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 3.5
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
اقسِم كل حد في على .
خطوة 3.5.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1.1
ألغِ العامل المشترك.
خطوة 3.5.2.1.2
أعِد كتابة العبارة.
خطوة 3.5.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.1
ألغِ العامل المشترك.
خطوة 3.5.2.2.2
اقسِم على .
خطوة 3.5.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.1.1
أخرِج العامل من .
خطوة 3.5.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.1.2.1
أخرِج العامل من .
خطوة 3.5.3.1.2.2
ألغِ العامل المشترك.
خطوة 3.5.3.1.2.3
أعِد كتابة العبارة.
خطوة 3.6
استبدِل بـ .
خطوة 4
عيّن قيمة المشتق بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 4.1.2
بما أن تحتوي على أعداد ومتغيرات على حدٍّ سواء، فهناك خطوتان لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للجزء العددي ثم أوجِد المضاعف المشترك الأصغر للجزء المتغير.
خطوة 4.1.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 4.1.4
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 4.1.5
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 4.1.6
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 4.1.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 4.1.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 4.1.9
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 4.2
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
اضرب كل حد في في .
خطوة 4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.2.1
أخرِج العامل من .
خطوة 4.2.2.1.2.2
ألغِ العامل المشترك.
خطوة 4.2.2.1.2.3
أعِد كتابة العبارة.
خطوة 4.2.2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.3.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.3.2
أعِد كتابة العبارة.
خطوة 4.2.2.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.2.1.5
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.5.1
اجمع و.
خطوة 4.2.2.1.5.2
اضرب في .
خطوة 4.2.2.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.6.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.6.2
أعِد كتابة العبارة.
خطوة 4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1.1
اضرب في .
خطوة 4.2.3.1.2
اضرب في .
خطوة 4.3
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
أخرِج العامل من .
خطوة 4.3.1.2
أخرِج العامل من .
خطوة 4.3.1.3
أخرِج العامل من .
خطوة 4.3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.3.3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.4.2
اطرح من كلا المتعادلين.
خطوة 4.3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
Solve the function at .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
أضف و.
خطوة 5.2.2
اضرب في .
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 6
Solve the function at .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
أضف و.
خطوة 6.2.2
أي جذر لـ هو .
خطوة 6.2.3
اضرب في .
خطوة 6.2.4
الإجابة النهائية هي .
خطوة 7
Solve the function at .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
أضف و.
خطوة 7.2.2
أي جذر لـ هو .
خطوة 7.2.3
اضرب في .
خطوة 7.2.4
الإجابة النهائية هي .
خطوة 8
The horizontal tangent lines are
خطوة 9