حساب التفاضل والتكامل الأمثلة

أوجد خط المماس الأفقي f(x)=2(x-1)^2
خطوة 1
أوجِد المشتق.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2
طبّق خاصية التوزيع.
خطوة 1.2.3
طبّق خاصية التوزيع.
خطوة 1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
اضرب في .
خطوة 1.3.1.2
انقُل إلى يسار .
خطوة 1.3.1.3
أعِد كتابة بالصيغة .
خطوة 1.3.1.4
أعِد كتابة بالصيغة .
خطوة 1.3.1.5
اضرب في .
خطوة 1.3.2
اطرح من .
خطوة 1.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.9
اضرب في .
خطوة 1.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.11
أضف و.
خطوة 1.12
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1
طبّق خاصية التوزيع.
خطوة 1.12.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.2.1
اضرب في .
خطوة 1.12.2.2
اضرب في .
خطوة 2
عيّن قيمة المشتق بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أضف إلى كلا المتعادلين.
خطوة 2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
اقسِم كل حد في على .
خطوة 2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.2.1.2
اقسِم على .
خطوة 2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
اقسِم على .
خطوة 3
أوجِد حل الدالة الأصلية عند .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اطرح من .
خطوة 3.2.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.2.3
اضرب في .
خطوة 3.2.4
الإجابة النهائية هي .
خطوة 4
خط المماس الأفقي في الدالة هو .
خطوة 5