إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة.
خطوة 1.2.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2
اضرب في .
خطوة 1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.6
بسّط العبارة.
خطوة 1.2.6.1
أضف و.
خطوة 1.2.6.2
اضرب في .
خطوة 1.3
ارفع إلى القوة .
خطوة 1.4
ارفع إلى القوة .
خطوة 1.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.6
أضف و.
خطوة 1.7
اطرح من .
خطوة 2
خطوة 2.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.2
أوجِد قيمة في المعادلة.
خطوة 2.2.1
اطرح من كلا المتعادلين.
خطوة 2.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.2.2.1
اقسِم كل حد في على .
خطوة 2.2.2.2
بسّط الطرف الأيسر.
خطوة 2.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.2.2.2.2
اقسِم على .
خطوة 2.2.2.3
بسّط الطرف الأيمن.
خطوة 2.2.2.3.1
اقسِم على .
خطوة 2.2.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.2.4
أي جذر لـ هو .
خطوة 2.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
خطوة 3.2.1
بسّط القاسم.
خطوة 3.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 3.2.1.2
أضف و.
خطوة 3.2.2
الإجابة النهائية هي .
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط القاسم.
خطوة 4.2.1.1
ارفع إلى القوة .
خطوة 4.2.1.2
أضف و.
خطوة 4.2.2
انقُل السالب أمام الكسر.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 5
خطوط المماس الأفقية في الدالة هي .
خطوة 6