إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
عيّن كدالة لـ .
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.2
أوجِد المشتقة.
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.4
بسّط العبارة.
خطوة 2.2.4.1
أضف و.
خطوة 2.2.4.2
اضرب في .
خطوة 2.2.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.8
بسّط العبارة.
خطوة 2.2.8.1
أضف و.
خطوة 2.2.8.2
اضرب في .
خطوة 2.3
بسّط.
خطوة 2.3.1
طبّق خاصية التوزيع.
خطوة 2.3.2
بسّط بَسْط الكسر.
خطوة 2.3.2.1
جمّع الحدود المتعاكسة في .
خطوة 2.3.2.1.1
اطرح من .
خطوة 2.3.2.1.2
أضف و.
خطوة 2.3.2.2
اضرب في .
خطوة 2.3.2.3
أضف و.
خطوة 3
خطوة 3.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3.2
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 4
لا يوجد حل بتعيين قيمة المشتق لتصبح مساوية لـ ، ، إذن لا توجد خطوط مماس أفقية.
لم يتم العثور على خطوط مماس أفقية
خطوة 5