إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2
خطوة 2.1
اطرح من كلا المتعادلين.
خطوة 2.2
اقسِم كل حد في على وبسّط.
خطوة 2.2.1
اقسِم كل حد في على .
خطوة 2.2.2
بسّط الطرف الأيسر.
خطوة 2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.2.1.2
اقسِم على .
خطوة 2.2.3
بسّط الطرف الأيمن.
خطوة 2.2.3.1
انقُل السالب أمام الكسر.
خطوة 2.3
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 2.4
بسّط الطرف الأيمن.
خطوة 2.4.1
القيمة الدقيقة لـ هي .
خطوة 2.5
دالة جيب التمام سالبة في الربعين الثاني والثالث. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 2.6
بسّط .
خطوة 2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.6.2
اجمع الكسور.
خطوة 2.6.2.1
اجمع و.
خطوة 2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 2.6.3
بسّط بَسْط الكسر.
خطوة 2.6.3.1
اضرب في .
خطوة 2.6.3.2
اطرح من .
خطوة 2.7
أوجِد فترة .
خطوة 2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.7.4
اقسِم على .
خطوة 2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 3.2.1.2
القيمة الدقيقة لـ هي .
خطوة 3.2.1.3
ألغِ العامل المشترك لـ .
خطوة 3.2.1.3.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2
أعِد كتابة العبارة.
خطوة 3.2.2
الإجابة النهائية هي .
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الثالث.
خطوة 4.2.1.2
القيمة الدقيقة لـ هي .
خطوة 4.2.1.3
ألغِ العامل المشترك لـ .
خطوة 4.2.1.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.2.1.3.2
ألغِ العامل المشترك.
خطوة 4.2.1.3.3
أعِد كتابة العبارة.
خطوة 4.2.2
الإجابة النهائية هي .
خطوة 5
خطوط المماس الأفقية في الدالة هي .
خطوة 6