حساب التفاضل والتكامل الأمثلة

أوجد خط المماس الأفقي y=x^3-14x^2+9x
خطوة 1
عيّن كدالة لـ .
خطوة 2
أوجِد المشتق.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 3
عيّن قيمة المشتق بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1.1
أخرِج العامل من .
خطوة 3.1.1.2
أعِد كتابة في صورة زائد
خطوة 3.1.1.3
طبّق خاصية التوزيع.
خطوة 3.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 3.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1
اقسِم كل حد في على .
خطوة 3.3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.2.1.2
اقسِم على .
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أضف إلى كلا المتعادلين.
خطوة 3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
أوجِد حل الدالة الأصلية عند .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
طبّق قاعدة الضرب على .
خطوة 4.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.1.3
ارفع إلى القوة .
خطوة 4.2.1.4
طبّق قاعدة الضرب على .
خطوة 4.2.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.1.6
ارفع إلى القوة .
خطوة 4.2.1.7
اجمع و.
خطوة 4.2.1.8
انقُل السالب أمام الكسر.
خطوة 4.2.1.9
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.9.1
أخرِج العامل من .
خطوة 4.2.1.9.2
ألغِ العامل المشترك.
خطوة 4.2.1.9.3
أعِد كتابة العبارة.
خطوة 4.2.2
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اضرب في .
خطوة 4.2.2.2
اضرب في .
خطوة 4.2.2.3
اكتب على هيئة كسر قاسمه .
خطوة 4.2.2.4
اضرب في .
خطوة 4.2.2.5
اضرب في .
خطوة 4.2.2.6
أعِد ترتيب عوامل .
خطوة 4.2.2.7
اضرب في .
خطوة 4.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.2.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.1
اضرب في .
خطوة 4.2.4.2
اضرب في .
خطوة 4.2.5
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.5.1
اطرح من .
خطوة 4.2.5.2
أضف و.
خطوة 4.2.6
الإجابة النهائية هي .
خطوة 5
أوجِد حل الدالة الأصلية عند .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
ارفع إلى القوة .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اطرح من .
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 6
خطوط المماس الأفقية في الدالة هي .
خطوة 7