إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
عيّن كدالة لـ .
خطوة 2
خطوة 2.1
أوجِد المشتقة.
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 3
خطوة 3.1
حلّل إلى عوامل بالتجميع.
خطوة 3.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.1.1.1
أخرِج العامل من .
خطوة 3.1.1.2
أعِد كتابة في صورة زائد
خطوة 3.1.1.3
طبّق خاصية التوزيع.
خطوة 3.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 3.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.2
أوجِد قيمة في .
خطوة 3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.3.2.2.1
اقسِم كل حد في على .
خطوة 3.3.2.2.2
بسّط الطرف الأيسر.
خطوة 3.3.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.2.1.2
اقسِم على .
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أضف إلى كلا المتعادلين.
خطوة 3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
طبّق قاعدة الضرب على .
خطوة 4.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.1.3
ارفع إلى القوة .
خطوة 4.2.1.4
طبّق قاعدة الضرب على .
خطوة 4.2.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.1.6
ارفع إلى القوة .
خطوة 4.2.1.7
اجمع و.
خطوة 4.2.1.8
انقُل السالب أمام الكسر.
خطوة 4.2.1.9
ألغِ العامل المشترك لـ .
خطوة 4.2.1.9.1
أخرِج العامل من .
خطوة 4.2.1.9.2
ألغِ العامل المشترك.
خطوة 4.2.1.9.3
أعِد كتابة العبارة.
خطوة 4.2.2
أوجِد القاسم المشترك.
خطوة 4.2.2.1
اضرب في .
خطوة 4.2.2.2
اضرب في .
خطوة 4.2.2.3
اكتب على هيئة كسر قاسمه .
خطوة 4.2.2.4
اضرب في .
خطوة 4.2.2.5
اضرب في .
خطوة 4.2.2.6
أعِد ترتيب عوامل .
خطوة 4.2.2.7
اضرب في .
خطوة 4.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.2.4
بسّط كل حد.
خطوة 4.2.4.1
اضرب في .
خطوة 4.2.4.2
اضرب في .
خطوة 4.2.5
بسّط عن طريق الجمع والطرح.
خطوة 4.2.5.1
اطرح من .
خطوة 4.2.5.2
أضف و.
خطوة 4.2.6
الإجابة النهائية هي .
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
ارفع إلى القوة .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.2
بسّط عن طريق الجمع والطرح.
خطوة 5.2.2.1
اطرح من .
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 6
خطوط المماس الأفقية في الدالة هي .
خطوة 7