حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=x-x^3
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
أعِد ترتيب الحدود.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
اطرح من كلا المتعادلين.
خطوة 2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.5
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أعِد كتابة بالصيغة .
خطوة 2.5.2
أي جذر لـ هو .
خطوة 2.5.3
اضرب في .
خطوة 2.5.4
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.1
اضرب في .
خطوة 2.5.4.2
ارفع إلى القوة .
خطوة 2.5.4.3
ارفع إلى القوة .
خطوة 2.5.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.5.4.5
أضف و.
خطوة 2.5.4.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.6.1
استخدِم لكتابة في صورة .
خطوة 2.5.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.5.4.6.3
اجمع و.
خطوة 2.5.4.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.6.4.1
ألغِ العامل المشترك.
خطوة 2.5.4.6.4.2
أعِد كتابة العبارة.
خطوة 2.5.4.6.5
احسِب قيمة الأُس.
خطوة 2.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 5
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9