حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=5/(x+5)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2
أعِد كتابة بالصيغة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
اضرب في .
خطوة 1.1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.5.1
أضف و.
خطوة 1.1.3.5.2
اضرب في .
خطوة 1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.4.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.2.1
اجمع و.
خطوة 1.1.4.2.2
انقُل السالب أمام الكسر.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 3
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
خطوة 4
أوجِد الموضع الذي يكون فيه المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2
اطرح من كلا المتعادلين.
خطوة 5
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
أضف و.
خطوة 6.2.1.2
ارفع إلى القوة .
خطوة 6.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اقسِم على .
خطوة 6.2.2.2
اضرب في .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
أضف و.
خطوة 7.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اقسِم على .
خطوة 7.2.2.2
اضرب في .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تناقص خلال:
خطوة 9