حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=4x+3x^2-x^3
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4.3
اضرب في .
خطوة 1.1.5
أعِد ترتيب الحدود.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.3
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1.1
ارفع إلى القوة .
خطوة 2.4.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1.2.1
اضرب في .
خطوة 2.4.1.2.2
اضرب في .
خطوة 2.4.1.3
أضف و.
خطوة 2.4.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1.4.1
أخرِج العامل من .
خطوة 2.4.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.4.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.4.2
اضرب في .
خطوة 2.4.3
بسّط .
خطوة 2.5
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1.1
ارفع إلى القوة .
خطوة 2.5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1.2.1
اضرب في .
خطوة 2.5.1.2.2
اضرب في .
خطوة 2.5.1.3
أضف و.
خطوة 2.5.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1.4.1
أخرِج العامل من .
خطوة 2.5.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.5.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.5.2
اضرب في .
خطوة 2.5.3
بسّط .
خطوة 2.5.4
غيّر إلى .
خطوة 2.6
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.1
ارفع إلى القوة .
خطوة 2.6.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.2.1
اضرب في .
خطوة 2.6.1.2.2
اضرب في .
خطوة 2.6.1.3
أضف و.
خطوة 2.6.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.4.1
أخرِج العامل من .
خطوة 2.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.6.2
اضرب في .
خطوة 2.6.3
بسّط .
خطوة 2.6.4
غيّر إلى .
خطوة 2.7
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 5
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اطرح من .
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أضف و.
خطوة 6.2.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
أضف و.
خطوة 7.2.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9