إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
خطوة 1.1.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2
أعِد كتابة بالصيغة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
اضرب في .
خطوة 1.1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.5
بسّط العبارة.
خطوة 1.1.3.5.1
أضف و.
خطوة 1.1.3.5.2
اضرب في .
خطوة 1.1.4
بسّط.
خطوة 1.1.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.4.2
جمّع الحدود.
خطوة 1.1.4.2.1
اجمع و.
خطوة 1.1.4.2.2
انقُل السالب أمام الكسر.
خطوة 1.2
أوجِد المشتق الثاني.
خطوة 1.2.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
خطوة 1.2.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.1.2
طبّق القواعد الأساسية للأُسس.
خطوة 1.2.1.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.1.2.2
اضرب الأُسس في .
خطوة 1.2.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.2.1.2.2.2
اضرب في .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.3
أوجِد المشتقة.
خطوة 1.2.3.1
اضرب في .
خطوة 1.2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.3.5
بسّط العبارة.
خطوة 1.2.3.5.1
أضف و.
خطوة 1.2.3.5.2
اضرب في .
خطوة 1.2.4
بسّط.
خطوة 1.2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.2.4.2
اجمع و.
خطوة 1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 3
لا توجد قيم يمكن أن تجعل المشتق الثاني مساويًا لـ .
لا توجد نقاط انقلاب