حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من infinity لـ (1-x^2)/(x^3-x+1)
خطوة 1
اقسِم بسط الكسر والقاسم على أعلى قوة لـ في القاسم، وهي .
خطوة 2
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
اضرب في .
خطوة 2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أخرِج العامل من .
خطوة 2.1.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.3
أعِد كتابة العبارة.
خطوة 2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
أعِد كتابة العبارة.
خطوة 2.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
ارفع إلى القوة .
خطوة 2.2.2.2
أخرِج العامل من .
خطوة 2.2.2.3
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.3.1
أخرِج العامل من .
خطوة 2.2.2.3.2
ألغِ العامل المشترك.
خطوة 2.2.2.3.3
أعِد كتابة العبارة.
خطوة 2.3
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 4
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 5
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 7
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 8
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.1.1
اضرب في .
خطوة 8.1.2
أضف و.
خطوة 8.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
اضرب في .
خطوة 8.2.2
أضف و.
خطوة 8.2.3
أضف و.
خطوة 8.3
اقسِم على .