حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل تكامل u^2sin(2u) بالنسبة إلى u
خطوة 1
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اجمع و.
خطوة 2.2
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اضرب في .
خطوة 4.2
اجمع و.
خطوة 4.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
أخرِج العامل من .
خطوة 4.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
أخرِج العامل من .
خطوة 4.3.2.2
ألغِ العامل المشترك.
خطوة 4.3.2.3
أعِد كتابة العبارة.
خطوة 4.3.2.4
اقسِم على .
خطوة 4.4
اضرب في .
خطوة 4.5
اضرب في .
خطوة 5
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اجمع و.
خطوة 6.2
اجمع و.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1.1
أوجِد مشتقة .
خطوة 8.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.1.4
اضرب في .
خطوة 8.2
أعِد كتابة المسألة باستخدام و.
خطوة 9
اجمع و.
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
اضرب في .
خطوة 11.2
اضرب في .
خطوة 12
تكامل بالنسبة إلى هو .
خطوة 13
أعِد كتابة بالصيغة .
خطوة 14
استبدِل كافة حالات حدوث بـ .
خطوة 15
أعِد ترتيب الحدود.