إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
اجمع و.
خطوة 1.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.5
أوجِد المشتقة.
خطوة 1.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.5.3
بسّط العبارة.
خطوة 1.5.3.1
اضرب في .
خطوة 1.5.3.2
انقُل إلى يسار .
خطوة 1.5.3.3
أعِد كتابة بالصيغة .
خطوة 1.5.3.4
أعِد ترتيب الحدود.
خطوة 1.6
احسِب قيمة المشتق في .
خطوة 1.7
بسّط.
خطوة 1.7.1
اضرب في .
خطوة 1.7.2
بسّط كل حد.
خطوة 1.7.2.1
اضرب في .
خطوة 1.7.2.2
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.7.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.7.2.4
اضرب .
خطوة 1.7.2.4.1
اضرب في .
خطوة 1.7.2.4.2
اضرب في .
خطوة 1.7.2.5
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.7.3
أضف و.
خطوة 2
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
أضف و.
خطوة 2.3.2
بسّط .
خطوة 2.3.2.1
طبّق خاصية التوزيع.
خطوة 2.3.2.2
اجمع و.
خطوة 2.3.2.3
اجمع و.
خطوة 2.3.2.4
انقُل السالب أمام الكسر.
خطوة 2.3.3
أعِد ترتيب الحدود.
خطوة 3