إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 3
خطوة 3.1
افترض أن . أوجِد .
خطوة 3.1.1
أوجِد مشتقة .
خطوة 3.1.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.1.3
أوجِد المشتقة.
خطوة 3.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.3.4
بسّط العبارة.
خطوة 3.1.3.4.1
أضف و.
خطوة 3.1.3.4.2
اضرب في .
خطوة 3.1.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.3.8
بسّط بجمع الحدود.
خطوة 3.1.3.8.1
أضف و.
خطوة 3.1.3.8.2
اضرب في .
خطوة 3.1.3.8.3
أضف و.
خطوة 3.1.3.8.4
أضف و.
خطوة 3.2
أعِد كتابة المسألة باستخدام و.
خطوة 4
خطوة 4.1
استخدِم لكتابة في صورة .
خطوة 4.2
انقُل خارج القاسم برفعها إلى القوة .
خطوة 4.3
اضرب الأُسس في .
خطوة 4.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2
اجمع و.
خطوة 4.3.3
انقُل السالب أمام الكسر.
خطوة 5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6
خطوة 6.1
أعِد كتابة بالصيغة .
خطوة 6.2
اضرب في .
خطوة 7
استبدِل كافة حالات حدوث بـ .