إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2
أوجِد المشتقة.
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
بسّط.
خطوة 1.3.1
أعِد ترتيب عوامل .
خطوة 1.3.2
أعِد ترتيب العوامل في .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
أوجِد المشتقة.
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.3
اضرب في .
خطوة 2.5
ارفع إلى القوة .
خطوة 2.6
ارفع إلى القوة .
خطوة 2.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.8
بسّط العبارة.
خطوة 2.8.1
أضف و.
خطوة 2.8.2
انقُل إلى يسار .
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
اضرب في .
خطوة 2.11
بسّط.
خطوة 2.11.1
طبّق خاصية التوزيع.
خطوة 2.11.2
اضرب في .
خطوة 2.11.3
أعِد ترتيب الحدود.
خطوة 2.11.4
أعِد ترتيب العوامل في .
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.7
اضرب في .
خطوة 3.2.8
اضرب في بجمع الأُسس.
خطوة 3.2.8.1
انقُل .
خطوة 3.2.8.2
اضرب في .
خطوة 3.2.8.2.1
ارفع إلى القوة .
خطوة 3.2.8.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.2.8.3
أضف و.
خطوة 3.2.9
انقُل إلى يسار .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.5
اضرب في .
خطوة 3.3.6
اضرب في .
خطوة 3.4
بسّط.
خطوة 3.4.1
طبّق خاصية التوزيع.
خطوة 3.4.2
جمّع الحدود.
خطوة 3.4.2.1
اضرب في .
خطوة 3.4.2.2
اضرب في .
خطوة 3.4.2.3
أضف و.
خطوة 3.4.3
أعِد ترتيب الحدود.
خطوة 3.4.4
أعِد ترتيب العوامل في .
خطوة 4
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
احسِب قيمة .
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.7
اضرب في .
خطوة 4.2.8
اضرب في بجمع الأُسس.
خطوة 4.2.8.1
انقُل .
خطوة 4.2.8.2
اضرب في .
خطوة 4.2.8.2.1
ارفع إلى القوة .
خطوة 4.2.8.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.2.8.3
أضف و.
خطوة 4.2.9
انقُل إلى يسار .
خطوة 4.3
احسِب قيمة .
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.3.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.7
اضرب في .
خطوة 4.3.8
ارفع إلى القوة .
خطوة 4.3.9
ارفع إلى القوة .
خطوة 4.3.10
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.11
أضف و.
خطوة 4.3.12
انقُل إلى يسار .
خطوة 4.3.13
اضرب في .
خطوة 4.4
بسّط.
خطوة 4.4.1
طبّق خاصية التوزيع.
خطوة 4.4.2
طبّق خاصية التوزيع.
خطوة 4.4.3
جمّع الحدود.
خطوة 4.4.3.1
اضرب في .
خطوة 4.4.3.2
اضرب في .
خطوة 4.4.3.3
اضرب في .
خطوة 4.4.3.4
اطرح من .
خطوة 4.4.3.4.1
انقُل .
خطوة 4.4.3.4.2
اطرح من .
خطوة 4.4.4
أعِد ترتيب الحدود.
خطوة 4.4.5
أعِد ترتيب العوامل في .
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .