حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de 2nd f(x)=x^2sin(x)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2
أعِد ترتيب الحدود.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.3
مشتق بالنسبة إلى يساوي .
خطوة 2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.5
اضرب في .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
طبّق خاصية التوزيع.
خطوة 2.4.2
أضف و.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
انقُل .
خطوة 2.4.2.2
أضف و.
خطوة 2.4.3
أعِد ترتيب الحدود.
خطوة 3
أوجِد المشتق الثالث.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2.3
مشتق بالنسبة إلى يساوي .
خطوة 3.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.3.3
مشتق بالنسبة إلى يساوي .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.5
اضرب في .
خطوة 3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4.2
مشتق بالنسبة إلى يساوي .
خطوة 3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
طبّق خاصية التوزيع.
خطوة 3.5.2
طبّق خاصية التوزيع.
خطوة 3.5.3
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.1
اضرب في .
خطوة 3.5.3.2
اضرب في .
خطوة 3.5.3.3
اطرح من .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.3.1
انقُل .
خطوة 3.5.3.3.2
اطرح من .
خطوة 3.5.3.4
أضف و.
خطوة 4
أوجِد المشتق الرابع.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.2.3
مشتق بالنسبة إلى يساوي .
خطوة 4.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.3.3
مشتق بالنسبة إلى يساوي .
خطوة 4.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.5
اضرب في .
خطوة 4.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.4.2
مشتق بالنسبة إلى يساوي .
خطوة 4.4.3
اضرب في .
خطوة 4.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
طبّق خاصية التوزيع.
خطوة 4.5.2
طبّق خاصية التوزيع.
خطوة 4.5.3
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.3.1
اضرب في .
خطوة 4.5.3.2
اضرب في .
خطوة 4.5.3.3
اضرب في .
خطوة 4.5.3.4
اطرح من .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.3.4.1
انقُل .
خطوة 4.5.3.4.2
اطرح من .
خطوة 4.5.3.5
اطرح من .
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .