حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de 2nd f(x)=(x^2+7)^7
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
أضف و.
خطوة 1.2.4.2
اضرب في .
خطوة 1.2.4.3
أعِد ترتيب عوامل .
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.4.1
أضف و.
خطوة 2.4.4.2
اضرب في .
خطوة 2.5
ارفع إلى القوة .
خطوة 2.6
ارفع إلى القوة .
خطوة 2.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.8
أضف و.
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
اضرب في .
خطوة 2.11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.11.1
طبّق خاصية التوزيع.
خطوة 2.11.2
اضرب في .
خطوة 2.11.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.11.3.1
أخرِج العامل من .
خطوة 2.11.3.2
أخرِج العامل من .
خطوة 2.11.3.3
أخرِج العامل من .
خطوة 2.11.4
أضف و.
خطوة 3
أوجِد المشتق الثالث.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4
اضرب في .
خطوة 3.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.6.1
أضف و.
خطوة 3.3.6.2
انقُل إلى يسار .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
انقُل إلى يسار .
خطوة 3.5.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.5.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.5.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.5.1
أضف و.
خطوة 3.5.5.2
اضرب في .
خطوة 3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
طبّق خاصية التوزيع.
خطوة 3.6.2
طبّق خاصية التوزيع.
خطوة 3.6.3
اضرب في .
خطوة 3.6.4
اضرب في .
خطوة 3.6.5
اضرب في .
خطوة 3.6.6
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.6.1
أخرِج العامل من .
خطوة 3.6.6.2
أخرِج العامل من .
خطوة 3.6.6.3
أخرِج العامل من .
خطوة 3.6.7
أعِد ترتيب عوامل .
خطوة 4
أوجِد المشتق الرابع.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1
طبّق خاصية التوزيع.
خطوة 4.1.1.2
اضرب في .
خطوة 4.1.2
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
أضف و.
خطوة 4.1.2.2
أضف و.
خطوة 4.1.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.4
اضرب في .
خطوة 4.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.6
أضف و.
خطوة 4.4
ارفع إلى القوة .
خطوة 4.5
ارفع إلى القوة .
خطوة 4.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.1
أضف و.
خطوة 4.7.2
انقُل إلى يسار .
خطوة 4.8
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.9
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.9.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.9.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.9.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.10
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.10.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.10.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.10.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.10.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.10.4.1
أضف و.
خطوة 4.10.4.2
اضرب في .
خطوة 4.11
ارفع إلى القوة .
خطوة 4.12
ارفع إلى القوة .
خطوة 4.13
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.14
أضف و.
خطوة 4.15
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.16
اضرب في .
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .