إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.3
القيمة الدقيقة لـ هي .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة المماس متصلة.
خطوة 1.3.3
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.3.3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.4
بسّط الإجابة.
خطوة 1.3.4.1
القيمة الدقيقة لـ هي .
خطوة 1.3.4.2
أضف و.
خطوة 1.3.4.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.5
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.5
مشتق بالنسبة إلى يساوي .
خطوة 4
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 8
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 9
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة القاطع متصلة.
خطوة 10
خطوة 10.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 10.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 11
خطوة 11.1
القيمة الدقيقة لـ هي .
خطوة 11.2
بسّط القاسم.
خطوة 11.2.1
القيمة الدقيقة لـ هي .
خطوة 11.2.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 11.2.3
أضف و.