حساب التفاضل والتكامل الأمثلة

قيّم باستخدام قاعدة لوبيتال النهاية عند اقتراب x من 1 لـ ( اللوغاريتم الطبيعي لـ x^2)/(x^2-1)
خطوة 1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
انقُل النهاية داخل اللوغاريتم.
خطوة 1.2.1.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.2.3.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.1.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.3.3.1.2
اضرب في .
خطوة 1.3.3.2
اطرح من .
خطوة 1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اجمع و.
خطوة 3.5
اجمع و.
خطوة 3.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
أخرِج العامل من .
خطوة 3.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.1
أخرِج العامل من .
خطوة 3.6.2.2
ألغِ العامل المشترك.
خطوة 3.6.2.3
أعِد كتابة العبارة.
خطوة 3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.10
أضف و.
خطوة 4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5
جمّع العوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اضرب في .
خطوة 5.2
ارفع إلى القوة .
خطوة 5.3
ارفع إلى القوة .
خطوة 5.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.5
أضف و.
خطوة 6
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
ألغِ العامل المشترك.
خطوة 6.1.2
أعِد كتابة العبارة.
خطوة 6.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 6.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6.4
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 7
احسِب قيمة حد بالتعويض عن بـ .
خطوة 8
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 8.2
اقسِم على .