إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
أوجِد المشتقة.
خطوة 1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4
اضرب في .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
بسّط العبارة.
خطوة 1.3.6.1
أضف و.
خطوة 1.3.6.2
اضرب في .
خطوة 1.3.6.3
أعِد ترتيب عوامل .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
ارفع إلى القوة .
خطوة 2.5
ارفع إلى القوة .
خطوة 2.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.7
أوجِد المشتقة.
خطوة 2.7.1
أضف و.
خطوة 2.7.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.7.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.7.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7.5
اضرب في .
خطوة 2.7.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.7.7
بسّط العبارة.
خطوة 2.7.7.1
أضف و.
خطوة 2.7.7.2
انقُل إلى يسار .
خطوة 2.8
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.8.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.8.2
مشتق بالنسبة إلى يساوي .
خطوة 2.8.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.9
ارفع إلى القوة .
خطوة 2.10
ارفع إلى القوة .
خطوة 2.11
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.12
أضف و.
خطوة 2.13
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.14
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.15
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.16
اضرب في .
خطوة 2.17
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.18
بسّط العبارة.
خطوة 2.18.1
أضف و.
خطوة 2.18.2
اضرب في .
خطوة 2.19
بسّط.
خطوة 2.19.1
طبّق خاصية التوزيع.
خطوة 2.19.2
جمّع الحدود.
خطوة 2.19.2.1
اضرب في .
خطوة 2.19.2.2
اضرب في .
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.8
اضرب في .
خطوة 3.2.9
أضف و.
خطوة 3.2.10
اضرب في .
خطوة 3.2.11
اضرب في .
خطوة 3.2.12
اضرب في .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.8
اضرب في .
خطوة 3.3.9
أضف و.
خطوة 3.3.10
انقُل إلى يسار .
خطوة 3.3.11
اضرب في .
خطوة 3.3.12
اضرب في .
خطوة 3.4
جمّع الحدود.
خطوة 3.4.1
أعِد ترتيب عوامل .
خطوة 3.4.2
اطرح من .
خطوة 4
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.3.2
مشتق بالنسبة إلى يساوي .
خطوة 4.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
ارفع إلى القوة .
خطوة 4.5
ارفع إلى القوة .
خطوة 4.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.7
أوجِد المشتقة.
خطوة 4.7.1
أضف و.
خطوة 4.7.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.7.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.7.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.7.5
اضرب في .
خطوة 4.7.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.7.7
بسّط العبارة.
خطوة 4.7.7.1
أضف و.
خطوة 4.7.7.2
انقُل إلى يسار .
خطوة 4.8
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.8.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.8.2
مشتق بالنسبة إلى يساوي .
خطوة 4.8.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.9
ارفع إلى القوة .
خطوة 4.10
ارفع إلى القوة .
خطوة 4.11
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.12
أضف و.
خطوة 4.13
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.14
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.15
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.16
اضرب في .
خطوة 4.17
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.18
بسّط العبارة.
خطوة 4.18.1
أضف و.
خطوة 4.18.2
اضرب في .
خطوة 4.19
بسّط.
خطوة 4.19.1
طبّق خاصية التوزيع.
خطوة 4.19.2
جمّع الحدود.
خطوة 4.19.2.1
اضرب في .
خطوة 4.19.2.2
اضرب في .