إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
بسّط العبارة.
خطوة 2.4.1
أضف و.
خطوة 2.4.2
انقُل إلى يسار .
خطوة 2.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.7
أضف و.
خطوة 2.8
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.9
اضرب.
خطوة 2.9.1
اضرب في .
خطوة 2.9.2
اضرب في .
خطوة 2.10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.11
اضرب في .
خطوة 3
خطوة 3.1
طبّق خاصية التوزيع.
خطوة 3.2
طبّق خاصية التوزيع.
خطوة 3.3
بسّط بَسْط الكسر.
خطوة 3.3.1
بسّط كل حد.
خطوة 3.3.1.1
اضرب في .
خطوة 3.3.1.2
اضرب في بجمع الأُسس.
خطوة 3.3.1.2.1
انقُل .
خطوة 3.3.1.2.2
اضرب في .
خطوة 3.3.1.3
اضرب في .
خطوة 3.3.2
أضف و.
خطوة 3.4
أعِد ترتيب الحدود.
خطوة 3.5
أخرِج العامل من .
خطوة 3.6
أخرِج العامل من .
خطوة 3.7
أخرِج العامل من .
خطوة 3.8
أعِد كتابة بالصيغة .
خطوة 3.9
أخرِج العامل من .
خطوة 3.10
أعِد كتابة بالصيغة .
خطوة 3.11
انقُل السالب أمام الكسر.