إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب في .
خطوة 2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7
اضرب في .
خطوة 2.8
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
اضرب في .
خطوة 2.11
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.12
أضف و.
خطوة 3
خطوة 3.1
أعِد ترتيب عوامل .
خطوة 3.2
اضرب في .
خطوة 3.3
بسّط بَسْط الكسر.
خطوة 3.3.1
أخرِج العامل من .
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
أخرِج العامل من .
خطوة 3.3.1.3
أخرِج العامل من .
خطوة 3.3.1.4
أخرِج العامل من .
خطوة 3.3.1.5
أخرِج العامل من .
خطوة 3.3.2
حلّل إلى عوامل بالتجميع.
خطوة 3.3.2.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.3.2.1.1
أخرِج العامل من .
خطوة 3.3.2.1.2
أعِد كتابة في صورة زائد
خطوة 3.3.2.1.3
طبّق خاصية التوزيع.
خطوة 3.3.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3.2.2.1
جمّع أول حدين وآخر حدين.
خطوة 3.3.2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3.2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.4
أخرِج العامل من .
خطوة 3.5
أعِد كتابة بالصيغة .
خطوة 3.6
أخرِج العامل من .
خطوة 3.7
أعِد كتابة بالصيغة .
خطوة 3.8
أخرِج العامل من .
خطوة 3.9
أخرِج العامل من .
خطوة 3.10
أخرِج العامل من .
خطوة 3.11
أخرِج العامل من .
خطوة 3.12
أخرِج العامل من .
خطوة 3.13
أعِد كتابة بالصيغة .
خطوة 3.14
أخرِج العامل من .
خطوة 3.15
أعِد كتابة بالصيغة .
خطوة 3.16
ألغِ العامل المشترك.
خطوة 3.17
أعِد كتابة العبارة.