حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2
انقُل إلى يسار .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أضف و.
خطوة 2.5.2
اضرب في .
خطوة 3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
طبّق خاصية التوزيع.
خطوة 4.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
اضرب في .
خطوة 4.3.1.2
اضرب في .
خطوة 4.3.2
أضف و.
خطوة 4.4
أعِد ترتيب الحدود.
خطوة 4.5
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
أخرِج العامل من .
خطوة 4.5.2
أخرِج العامل من .
خطوة 4.5.3
أخرِج العامل من .
خطوة 4.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
أخرِج العامل من .
خطوة 4.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.6.2.1
اضرب في .
خطوة 4.6.2.2
ألغِ العامل المشترك.
خطوة 4.6.2.3
أعِد كتابة العبارة.
خطوة 4.6.2.4
اقسِم على .
خطوة 4.7
طبّق خاصية التوزيع.
خطوة 4.8
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.9
انقُل إلى يسار .
خطوة 4.10
أعِد ترتيب العوامل في .