حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx (e^(2x)+1)/(e^(2x)-1)
خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
انقُل إلى يسار .
خطوة 4.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
أضف و.
خطوة 4.5.2
انقُل إلى يسار .
خطوة 4.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 5.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.3
استبدِل كافة حالات حدوث بـ .
خطوة 6
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اضرب في .
خطوة 6.3.2
انقُل إلى يسار .
خطوة 6.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
أضف و.
خطوة 6.5.2
اضرب في .
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
طبّق خاصية التوزيع.
خطوة 7.2
طبّق خاصية التوزيع.
خطوة 7.3
طبّق خاصية التوزيع.
خطوة 7.4
طبّق خاصية التوزيع.
خطوة 7.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 7.5.1.1
اطرح من .
خطوة 7.5.1.2
أضف و.
خطوة 7.5.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.2.1
اضرب في .
خطوة 7.5.2.2
اضرب في .
خطوة 7.5.3
اطرح من .
خطوة 7.6
انقُل السالب أمام الكسر.
خطوة 7.7
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 7.7.1
أعِد كتابة بالصيغة .
خطوة 7.7.2
أعِد كتابة بالصيغة .
خطوة 7.7.3
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 7.7.4
طبّق قاعدة الضرب على .