إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
اطرح من كلا المتعادلين.
خطوة 3
خطوة 3.1
أخرِج العامل من .
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
أخرِج العامل من .
خطوة 3.1.3
أخرِج العامل من .
خطوة 3.2
أعِد كتابة بالصيغة .
خطوة 3.3
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 3.4
حلّل إلى عوامل.
خطوة 3.4.1
بسّط.
خطوة 3.4.1.1
اضرب في .
خطوة 3.4.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 3.4.2
احذِف الأقواس غير الضرورية.
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
خطوة 6.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 6.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 6.2.3
بسّط.
خطوة 6.2.3.1
بسّط بَسْط الكسر.
خطوة 6.2.3.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.3.1.2
اضرب .
خطوة 6.2.3.1.2.1
اضرب في .
خطوة 6.2.3.1.2.2
اضرب في .
خطوة 6.2.3.1.3
اطرح من .
خطوة 6.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 6.2.3.1.5
أعِد كتابة بالصيغة .
خطوة 6.2.3.1.6
أعِد كتابة بالصيغة .
خطوة 6.2.3.2
اضرب في .
خطوة 6.2.4
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.