حساب التفاضل والتكامل الأمثلة

خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اقسِم كل حد في على .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
اقسِم على .
خطوة 2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اقسِم على .
خطوة 3
اطرح من كلا المتعادلين.
خطوة 4
اطرح من .
خطوة 5
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أخرِج العامل من .
خطوة 5.1.2
أخرِج العامل من .
خطوة 5.1.3
أخرِج العامل من .
خطوة 5.1.4
أخرِج العامل من .
خطوة 5.1.5
أخرِج العامل من .
خطوة 5.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 5.3
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 5.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 5.4
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
استبدِل كافة حالات حدوث بـ .
خطوة 5.4.2
احذِف الأقواس غير الضرورية.
خطوة 6
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.2
أضف إلى كلا المتعادلين.
خطوة 8
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 8.2
اطرح من كلا المتعادلين.
خطوة 9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.