حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من pi/4 لـ (tan(x)-1)/(4x-pi)
خطوة 1
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة المماس متصلة.
خطوة 1.1.2.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1.1
القيمة الدقيقة لـ هي .
خطوة 1.1.2.3.1.2
اضرب في .
خطوة 1.1.2.3.2
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1.1
ألغِ العامل المشترك.
خطوة 1.1.3.3.1.2
أعِد كتابة العبارة.
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1
أضف و.
خطوة 1.3.5.2
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 1.3.5.3
طبّق قاعدة الضرب على .
خطوة 1.3.5.4
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.7.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.7.3
اضرب في .
خطوة 1.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.9
أضف و.
خطوة 1.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.5
اضرب في .
خطوة 2
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.4
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.5
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اجمع.
خطوة 4.2
اضرب في .
خطوة 4.3
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
القيمة الدقيقة لـ هي .
خطوة 4.3.2
طبّق قاعدة الضرب على .
خطوة 4.3.3
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
استخدِم لكتابة في صورة .
خطوة 4.3.3.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.3.3
اجمع و.
خطوة 4.3.3.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.4.1
ألغِ العامل المشترك.
خطوة 4.3.3.4.2
أعِد كتابة العبارة.
خطوة 4.3.3.5
احسِب قيمة الأُس.
خطوة 4.3.4
ارفع إلى القوة .
خطوة 4.3.5
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.5.1
أخرِج العامل من .
خطوة 4.3.5.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.5.2.1
أخرِج العامل من .
خطوة 4.3.5.2.2
ألغِ العامل المشترك.
خطوة 4.3.5.2.3
أعِد كتابة العبارة.
خطوة 4.4
اجمع و.
خطوة 4.5
اقسِم على .
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: