حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من pi/3 لـ (1-2cos(x))/(pi-3x)
خطوة 1
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.1.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.2.1.4
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1.1
القيمة الدقيقة لـ هي .
خطوة 1.1.2.3.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1.2.1
أخرِج العامل من .
خطوة 1.1.2.3.1.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.3.1.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.3.2
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.1.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1.1
أخرِج العامل من .
خطوة 1.1.3.3.1.2
ألغِ العامل المشترك.
خطوة 1.1.3.3.1.3
أعِد كتابة العبارة.
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.3
اضرب في .
خطوة 1.3.5
أضف و.
خطوة 1.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.8.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.8.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.8.3
اضرب في .
خطوة 1.3.9
اطرح من .
خطوة 2
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
انقُل السالب أمام الكسر.
خطوة 4.2
القيمة الدقيقة لـ هي .
خطوة 4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.3.2
أخرِج العامل من .
خطوة 4.3.3
ألغِ العامل المشترك.
خطوة 4.3.4
أعِد كتابة العبارة.
خطوة 4.4
اجمع و.
خطوة 4.5
انقُل السالب أمام الكسر.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: